Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(4): 2399-2407, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454747

RESUMO

Escherichia coli and other bacteria use adhesion receptors, such as FimH, to attach to carbohydrates on the cell surface as the first step of colonization and infection. Efficient inhibitors that block these interactions for infection treatment are multivalent carbohydrate-functionalized scaffolds. However, these multivalent systems often lead to the formation of large clusters of bacteria, which may pose problems for clearing bacteria from the infected site. Here, we present Man-containing Janus particles (JPs) decorated on one side with glycomacromolecules to target Man-specific adhesion receptors of E. coli. On the other side, poly(N-isopropylacrylamide) is attached to the particle hemisphere, providing temperature-dependent sterical shielding against binding and cluster formation. While homogeneously functionalized particles cluster with multiple bacteria to form large aggregates, glycofunctionalized JPs are able to form aggregates only with individual bacteria. The formation of large aggregates from the JP-decorated single bacteria can still be induced in a second step by increasing the temperature and making use of the collapse of the PNIPAM hemisphere. This is the first time that carbohydrate-functionalized JPs have been derived and used as inhibitors of bacterial adhesion. Furthermore, the developed JPs offer well-controlled single bacterial inhibition in combination with cluster formation upon an external stimulus, which is not achievable with conventional carbohydrate-functionalized particles.


Assuntos
Aderência Bacteriana , Nanopartículas Multifuncionais , Humanos , Escherichia coli/química , Carboidratos/química , Temperatura
2.
Bioconjug Chem ; 35(3): 351-370, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38440876

RESUMO

A cationic, dendrimer-like oligo(aminoamide) carrier with four-arm topology based on succinoyl tetraethylene pentamine and histidines, cysteines, and N-terminal azido-lysines was screened for plasmid DNA delivery on various cell lines. The incorporated azides allow modification with various shielding agents of different polyethylene glycol (PEG) lengths and/or different ligands by copper-free click reaction, either before or after polyplex formation. Prefunctionalization was found to be advantageous over postfunctionalization in terms of nanoparticle formation, stability, and efficacy. A length of 24 ethylene oxide repetition units and prefunctionalization of ≥50% of azides per carrier promoted optimal polyplex shielding. PEG shielding resulted in drastically reduced DNA transfer, which could be successfully restored by active lectin targeting via novel GalNAc or mannose ligands, enabling enhanced receptor-mediated endocytosis of the carrier system. The involvement of the asialoglycoprotein receptor (ASGPR) in the uptake of GalNAc-functionalized polyplexes was confirmed in the ASGPR-positive hepatocarcinoma cell lines HepG2 and Huh7. Mannose-modified polyplexes showed superior cellular uptake and transfection efficacy compared to unmodified and shielded polyplexes in mannose-receptor-expressing dendritic cell-like DC2.4 cells.


Assuntos
Manose , Polietilenoglicóis , Azidas , DNA/metabolismo , Transfecção
3.
Digit Health ; 9: 20552076231203893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928327

RESUMO

Objective: Digital interventions hold important potential for supporting parents when face-to-face interventions are unavailable. We assessed the feasibility and effectiveness of a digital parenting intervention in Zambia and Tanzania. Methods: Using a randomised controlled trial, we evaluated the Sharing Stories digital parenting intervention for caregivers of children aged 9-32 months with access to a smartphone in their household. Caregivers were stratified based on child age and randomly assigned to the intervention or waitlist control arm. The intervention was delivered via facilitated WhatsApp groups over 6 weeks to promote caregiver wellbeing and responsive caregiving through shared reading activities. Primary outcomes were caregiver-reported responsive caregiving, child language and socio-emotional development. Secondary outcomes were caregiver mental health and parental stress. Masked assessors conducted assessments at baseline and immediate follow-up. Results: Between October 2020 and March 2021, we randomly assigned 494 caregiver-child dyads to the intervention (n = 248) or waitlist control (n = 246) arm. Caregivers in the intervention group reported more responsive caregiving (OR = 2.55, 95% CI: 1.15-5.66, p = 0.02), time reading or looking at books (ß = 0.45, p = 0.04) and telling stories (ß = 0.72, p = 0.002). Intervention caregivers reported significantly lower symptoms of depression (ß = -0.64, p = 0.05) and anxiety (ß = -0.65, p = 0.02). Child development and parental stress did not differ significantly between groups. Conclusions: Digital parenting interventions using WhatsApp can effectively promote responsive caregiving and caregiver mental health in low-resource settings, with great potential for scalability. Trial registration: ISRCTN database, ISRCTN77689525.

4.
Polymers (Basel) ; 15(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37765517

RESUMO

The straightforward synthesis of polyamide-derived statistical copolymers with catechol, amine, amide and hydroxy residues via free radical polymerization is presented. In particular, catechol, amine and amide residues are present in natural mussel foot proteins, enabling strong underwater adhesion due to synergistic effects where cationic residues displace hydration and ion layers, followed by strong short-rang hydrogen bonding between the catechol or primary amides and SiO2 surfaces. The present study is aimed at investigating whether such synergistic effects also exist for statistical copolymer systems that lack the sequence-defined positioning of functional groups in mussel foot proteins. A series of copolymers is established and the adsorption in saline solutions on SiO2 is determined by quartz crystal microbalance measurements and ellipsometry. These studies confirm a synergy between cationic amine groups with catechol units and primary amide groups via an increased adsorptivity and increased polymer layer thicknesses. Therefore, the free radical polymerization of catechol, amine and amide monomers as shown here may lead to simplified mussel-inspired adhesives that can be prepared with the readily scalable methods required for large-scale applications.

5.
Biomacromolecules ; 24(8): 3666-3679, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37507377

RESUMO

Survivin, a well-known member of the inhibitor of apoptosis protein family, is upregulated in many cancer cells, which is associated with resistance to chemotherapy. To circumvent this, inhibitors are currently being developed to interfere with the nuclear export of survivin by targeting its protein-protein interaction (PPI) with the export receptor CRM1. Here, we combine for the first time a supramolecular tweezer motif, sequence-defined macromolecular scaffolds, and ultrasmall Au nanoparticles (us-AuNPs) to tailor a high avidity inhibitor targeting the survivin-CRM1 interaction. A series of biophysical and biochemical experiments, including surface plasmon resonance measurements and their multivalent evaluation by EVILFIT, reveal that for divalent macromolecular constructs with increasing linker distance, the longest linkers show superior affinity, slower dissociation, as well as more efficient PPI inhibition. As a drawback, these macromolecular tweezer conjugates do not enter cells, a critical feature for potential applications. The problem is solved by immobilizing the tweezer conjugates onto us-AuNPs, which enables efficient transport into HeLa cells. On the nanoparticles, the tweezer valency rises from 2 to 16 and produces a 100-fold avidity increase. The hierarchical combination of different scaffolds and controlled multivalent presentation of supramolecular binders was the key to the development of highly efficient survivin-CRM1 competitors. This concept may also be useful for other PPIs.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Survivina , Células HeLa , Proteínas Inibidoras de Apoptose/metabolismo , Substâncias Macromoleculares/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo
6.
Violence Against Women ; : 10778012231172710, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37132035

RESUMO

This study employed a cross-sectional, qualitative individual interview methodology to explore South African women with physical disabilities' experiences of intimate partner and sexual violence, inclusive of non-consensual and coerced sexual intercourse. For the participants, disability was a factor that intersected with gender norms to create vulnerability to abuse, and that patriarchal ideologies constructing how women should perform their gendered roles in marriage or sexual partnerships, as well as disability stigma, exacerbated this vulnerability. It is important to develop understandings of the different risk factors for violence - at the individual level and in the context of dyadic relationships - to develop programming to better support women.

7.
Biomacromolecules ; 24(6): 2532-2540, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37133885

RESUMO

This study presents the preparation and phase behavior of glycan-functionalized polyelectrolytes for capturing carbohydrate-binding proteins and bacteria in liquid condensate droplets. The droplets are formed by complex coacervation of poly(active ester)-derived polyanions and polycations. This approach allows for a straightforward modular introduction of charged motifs and specifically interacting units; mannose and galactose oligomers are used here as first examples. The introduction of carbohydrates has a notable effect on the phase separation and the critical salt concentration, potentially by reducing the charge density. Two mannose binding species, concanavalin A (ConA) and Escherichia coli, are shown to not only specifically bind to mannose-functionalized coacervates but also to some degree to unfunctionalized, carbohydrate-free coacervates. This suggests non-carbohydrate-specific charge-charge interactions between the protein/bacteria and the droplets. However, when mannose interactions are inhibited or when non-binding galactose-functionalized polymers are used, interactions are significantly weakened. This confirms specific mannose-mediated binding functionalization and suggests that introducing carbohydrates reduces non-specific charge-charge interactions by a so far unidentified mechanism. Overall, the presented route toward glycan-presenting polyelectrolytes enables new functional liquid condensate droplets with specific biomolecular interactions.


Assuntos
Lectinas , Manose , Lectinas/metabolismo , Polieletrólitos/química , Manose/química , Galactose/química , Carboidratos/química , Polissacarídeos
8.
ACS Omega ; 8(19): 16883-16895, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37214724

RESUMO

Lectin-glycan interactions are at the heart of a multitude of biological events. Glycans are usually presented in a multivalent manner on the cell surface as part of the so-called glycocalyx, where they interact with other entities. This multivalent presentation allows us to overcome the typical low affinities found for individual glycan-lectin interactions. Indeed, the presentation of glycans may drastically impact their binding by lectins, highly affecting the corresponding binding affinity and even selectivity. In this context, we herein present the study of the interaction of a variety of homo- and heteromultivalent lactose-functionalized glycomacromolecules and their lipid conjugates with two human galectins. We have employed as ligands the glycomacromolecules, as well as liposomes decorated with those structures, to evaluate their interactions in a cell-mimicking environment. Key details of the interaction have been unravelled by NMR experiments, both from the ligand and receptor perspectives, complemented by cryo-electron microscopy methods and molecular dynamics simulations.

9.
Blood Adv ; 7(15): 4124-4134, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37196643

RESUMO

Graft-versus-host disease (GVHD) is a major risk of the administration of allogeneic chimeric antigen receptor (CAR)-redirected T cells to patients who are HLA unmatched. Gene editing can be used to disrupt potentially alloreactive T-cell receptors (TCRs) in CAR T cells and reduce the risk of GVHD. Despite the high knockout rates achieved with the optimized methods, a subsequent purification step is necessary to obtain a safe allogeneic product. To date, magnetic cell separation (MACS) has been the gold standard for purifying TCRα/ß- CAR T cells, but product purity can still be insufficient to prevent GVHD. We developed a novel and highly efficient approach to eliminate residual TCR/CD3+ T cells after TCRα constant (TRAC) gene editing by adding a genetically modified CD3-specific CAR NK-92 cell line during ex vivo expansion. Two consecutive cocultures with irradiated, short-lived, CAR NK-92 cells allowed for the production of TCR- CAR T cells with <0.01% TCR+ T cells, marking a 45-fold reduction of TCR+ cells compared with MACS purification. Through an NK-92 cell-mediated feeder effect and circumventing MACS-associated cell loss, our approach increased the total TCR- CAR T-cell yield approximately threefold while retaining cytotoxic activity and a favorable T-cell phenotype. Scaling in a semiclosed G-Rex bioreactor device provides a proof-of-principle for large-batch manufacturing, allowing for an improved cost-per-dose ratio. Overall, this cell-mediated purification method has the potential to advance the production process of safe off-the-shelf CAR T cells for clinical applications.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle
10.
Chem Soc Rev ; 52(8): 2617-2642, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36820794

RESUMO

Pathogens including viruses, bacteria, fungi, and parasites continue to shape our lives in profound ways every day. As we have learned to live in parallel with pathogens, we have gained a better understanding of the rules of engagement for how they bind, adhere, and invade host cells. One such mechanism involves the exploitation of host cell surface glycans for attachment/adhesion, one of the first steps of infection. This knowledge has led to the development of glycan-based diagnostics and therapeutics for the treatment and prevention of infection. One class of compounds that has become increasingly important are the glycopolymers. Glycopolymers are macromolecules composed of a synthetic scaffold presenting carbohydrates as side chain motifs. Glycopolymers are particularly attractive because their properties can be tuned by careful choice of the scaffold, carbohydrate/glycan, and overall presentation. In this review, we highlight studies over the past ten years that have examined the role of glycopolymers in pathogen adhesion and host cell infection, biofilm formation and removal, and drug delivery with the aim of examining the direct effects of these macromolecules on pathogen engagement. In addition, we also examine the role of glycopolymers as diagnostics for the detection and monitoring of pathogens.


Assuntos
Carboidratos , Polissacarídeos , Carboidratos/química , Polissacarídeos/química , Polímeros/química , Sistemas de Liberação de Medicamentos
11.
Plant Physiol ; 192(1): 504-526, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36493393

RESUMO

Organisms require micronutrients, and Arabidopsis (Arabidopsis thaliana) IRON-REGULATED TRANSPORTER1 (IRT1) is essential for iron (Fe2+) acquisition into root cells. Uptake of reactive Fe2+ exposes cells to the risk of membrane lipid peroxidation. Surprisingly little is known about how this is avoided. IRT1 activity is controlled by an intracellular variable region (IRT1vr) that acts as a regulatory protein interaction platform. Here, we describe that IRT1vr interacted with peripheral plasma membrane SEC14-Golgi dynamics (SEC14-GOLD) protein PATELLIN2 (PATL2). SEC14 proteins bind lipophilic substrates and transport or present them at the membrane. To date, no direct roles have been attributed to SEC14 proteins in Fe import. PATL2 affected root Fe acquisition responses, interacted with ROS response proteins in roots, and alleviated root lipid peroxidation. PATL2 had high affinity in vitro for the major lipophilic antioxidant vitamin E compound α-tocopherol. Molecular dynamics simulations provided insight into energetic constraints and the orientation and stability of the PATL2-ligand interaction in atomic detail. Hence, this work highlights a compelling mechanism connecting vitamin E with root metal ion transport at the plasma membrane with the participation of an IRT1-interacting and α-tocopherol-binding SEC14 protein.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Vitamina E/metabolismo , alfa-Tocoferol , Transporte Biológico , Arabidopsis/genética , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Clin Res Cardiol ; 112(3): 431-440, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36436002

RESUMO

Cases of myocarditis, diagnosed clinically by laboratory tests and imaging have been described in the context of mRNA-based anti-SARS-CoV-2 vaccination. Autopsy-based description of detailed histological features of vaccine-induced myocarditis is lacking. We describe the autopsy findings and common characteristics of myocarditis in untreated persons who received anti-SARS-CoV-2 vaccination. Standardized autopsies were performed on 25 persons who had died unexpectedly and within 20 days after anti-SARS-CoV-2 vaccination. In four patients who received a mRNA vaccination, we identified acute (epi-)myocarditis without detection of another significant disease or health constellation that may have caused an unexpected death. Histology showed patchy interstitial myocardial T-lymphocytic infiltration, predominantly of the CD4 positive subset, associated with mild myocyte damage. Overall, autopsy findings indicated death due to acute arrhythmogenic cardiac failure. Thus, myocarditis can be a potentially lethal complication following mRNA-based anti-SARS-CoV-2 vaccination. Our findings may aid in adequately diagnosing unclear cases after vaccination and in establishing a timely diagnosis in vivo, thus, providing the framework for adequate monitoring and early treatment of severe clinical cases.


Assuntos
COVID-19 , Insuficiência Cardíaca , Miocardite , Humanos , Autopsia , Miocardite/diagnóstico , Miocardite/etiologia , COVID-19/diagnóstico , COVID-19/prevenção & controle , Vacinação , RNA Mensageiro
13.
Biomacromolecules ; 23(12): 5273-5284, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36398945

RESUMO

Glycoconjugates are a versatile class of bioactive molecules that have found application as vaccines and antivirals and in cancer therapy. Their synthesis typically involves elaborate functionalization and use of protecting groups on the carbohydrate component in order to ensure efficient and selective conjugation. Alternatively, non-functionalized, non-protected carbohydrates isolated from biological sources or derived through biotechnological methods can be directly conjugated via N-methyloxyamine groups. In this study, we introduce such N-methyloxyamine groups into a variety of multivalent scaffolds─from small to oligomeric to polymeric scaffolds─making use of solid-phase polymer synthesis to assemble monodisperse sequence-defined macromolecules. These scaffolds are then successfully functionalized with different types of human milk oligosaccharides deriving a library of homo- and heteromultivalent glycoconjugates. Glycomacromolecules presenting oligosaccharide side chains with either α2,3- or α2,6-linked terminal sialic acid are used in a binding study with two types of polyomavirus capsid proteins showing that the multivalent presentation through the N-methyloxyamine-derived scaffolds increases the number of contacts with the protein. Overall, a straightforward route to derive glycoconjugates from complex oligosaccharides with high variability yet control in the multivalent scaffold is presented, and applicability of the derived structures is demonstrated.


Assuntos
Polyomavirus , Humanos , Polyomavirus/química , Proteínas do Capsídeo/química , Oligossacarídeos/química , Glicosilação , Carboidratos/química , Glicoconjugados , Substâncias Macromoleculares
14.
Biomacromolecules ; 23(11): 4504-4518, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36200481

RESUMO

Many natural proteins contain flexible loops utilizing well-defined complementary surface regions of their interacting partners and usually undergo major structural rearrangements to allow perfect binding. The molecular recognition of such flexible structures is still highly challenging due to the inherent conformational dynamics. Notably, protein-protein interactions are on the other hand characterized by a multivalent display of complementary binding partners to enhance molecular affinity and specificity. Imitating this natural concept, we here report the rational design of advanced multivalent supramolecular tweezers that allow addressing two lysine and arginine clusters on a flexible protein surface loop. The protease Taspase 1, which is involved in cancer development, carries a basic bipartite nuclear localization signal (NLS) and thus interacts with Importin α, a prerequisite for proteolytic activation. Newly established synthesis routes enabled us to covalently fuse several tweezer molecules into multivalent NLS ligands. The resulting bi- up to pentavalent constructs were then systematically compared in comprehensive biochemical assays. In this series, the stepwise increase in valency was robustly reflected by the ligands' gradually enhanced potency to disrupt the interaction of Taspase 1 with Importin α, correlated with both higher binding affinity and inhibition of proteolytic activity.


Assuntos
Núcleo Celular , alfa Carioferinas , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Sequência de Aminoácidos , Ligantes , Ligação Proteica , Núcleo Celular/metabolismo , Sinais de Localização Nuclear/metabolismo , Proteínas/metabolismo , Peptídeo Hidrolases/metabolismo
15.
Cancer Lett ; 550: 215928, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183858

RESUMO

Radiotherapy can act as an in situ vaccine, activating preventive tumor-specific immune responses in patients. Although carbon ion radiotherapy has superior biophysical properties over conventional photon irradiation, the immunological effects induced by this radiation type are poorly understood. Multiple strategies combining radiotherapy with immune checkpoint inhibition (radioimmunotherapy) to enhance antitumor immunity have been described; however, immune cell composition in tumors following radioimmunotherapy with carbon ions remains poorly explored. We developed a bilateral tumor model based on time-shifted subcutaneous injection of murine Her2+ EO771 tumor cells into immune-competent mice followed by selective irradiation of the primary tumor. αCTLA4-, but not αPD-L1-based radioimmunotherapy, induced complete tumor rejection and mediated the eradication of even non-irradiated, distant tumors. Cured mice were protected against the EO771 rechallenge, indicating long-lasting, tumor-specific immunological memory. Single-cell RNA sequencing and flow cytometric analyses of irradiated tumors revealed activation of NK cells and distinct tumor-associated macrophage clusters with upregulated expression of TNF and IL1 responsive genes. Distant tumors in the irradiated mice showed higher frequencies of naïve T cells activated upon the combination with CTLA4 blockade. Thus, radioimmunotherapy with carbon ions plus CTLA4 inhibition reshapes the tumor-infiltrating immune cell composition and can induce complete rejection even of non-irradiated tumors. Our data suggest combining radiotherapy approaches with CTLA4 blockade to achieve durable antitumor immunity. Evaluation of future radioimmunotherapy approaches should not be restricted to immunological impact at the irradiation site but should also consider systemic immunological effects on non-irradiated tumors.


Assuntos
Radioterapia com Íons Pesados , Inibidores de Checkpoint Imunológico , Animais , Antígeno CTLA-4 , Carbono , Linhagem Celular Tumoral , Memória Imunológica , Camundongos
16.
Macromolecules ; 55(18): 7957-7973, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36186574

RESUMO

Heparin (HP) and heparan sulfate (HS) are linear, anionically charged polysaccharides well-known for their diverse biological activities. While HP is generally localized in mast cells and in connective tissues, HS is part of the glycocalyx and involved in the attachment of viruses to host cells, constituting the first step of an infection. HP and HS also exhibit antiviral activity by blocking viral receptors, thereby inhibiting viruses from engaging with host cells. Inspired by their structural features, such as their high molecular weight and polyanionic character, various synthetic polymers mimicking HP/HS have been developed and used as model systems to study bioactivity, as well as for therapeutic applications. This Perspective provides an overview of the roles of HP/HS in viral engagement, and examines historical and recent approaches toward oligo-/polysaccharide, glycopolymer, and anionic polymer HP/HS mimetics. An overview of current applications and future prospects of these molecules is provided, demonstrating their potential in addressing current and future epidemics and pandemics.

17.
Macromol Biosci ; 22(12): e2200358, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36112275

RESUMO

Sialoglycans play a key role in many biological recognition processes and sialylated conjugates of various types have successfully been applied, e.g., as antivirals or in antitumor therapy. A key feature for high affinity binding of such conjugates is the multivalent presentation of sialoglycans which often possess synthetic challenges. Here, the combination is described of solid phase polymer synthesis and enzymatic sialylation yielding 3'-sialyllactose-presenting precision glycomacromolecules. CMP-Neu5Ac synthetase from Neisseria meningitidis (NmCSS) and sialyltransferase from Pasteurella multocida (PmST1) are combined in a one-pot reaction giving access to sequence-defined sialylated macromolecules. Surprisingly, when employing Tris(hydroxymethyl)aminomethane (Tris) as a buffer, formation of significant amounts of α-linked Tris-sialoside is observed as a side reaction. Further exploring and exploiting this unusual sialylation reaction, different neoglycosidic structures are synthesized showing that PmST1 can be used to derive both, sialylation on natural carbohydrates as well as on synthetic hydroxylated scaffolds.


Assuntos
Oligossacarídeos , Pasteurella multocida
18.
Biomacromolecules ; 23(9): 4004-4014, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35959886

RESUMO

Sulfated glycosaminoglycans (sGAGs) such as heparan sulfate (HS) are structurally diverse linear polysaccharides that are involved in many biological processes and have gained interest as antiviral compounds. Their recognition is driven by a complex orchestra of structural parameters that are still under intense investigation. One distinct characteristic is the incorporation of sulfation patterns including highly sulfated and non-sulfated sequences that provide variations in flexibility and conformation, which in turn impact the biological function of sGAGs. However, these distinct features have not yet been fully realized in the synthetic preparation of sGAG mimetics. Here, we present the synthesis of three groups of sulfated glycomacromolecules as sGAG mimetics: (i) globally sulfated glycooligomers, (ii) glycooligomers with sequence-defined sulfation patterns, and (iii) a globally sulfated glycooligomer-oligo-L-proline hybrid structure. The complete synthesis, including chemical sulfation, was conducted on solid support, enabled by the introduction of a commercially available photocleavable linker allowing for the preservation of sensitive sulfates during cleavage of the products. Structures were obtained in good purity and with high degrees of sulfation demonstrating the wide applicability of this methodology to prepare tailor-made sulfated glycomacromolecules and similar sGAG mimetics. Structures were tested for their anticoagulant properties showing activity similar to their natural HS counterpart and significantly lower than HP.


Assuntos
Glicosaminoglicanos , Heparitina Sulfato , Anticoagulantes , Glicosaminoglicanos/química , Heparitina Sulfato/química , Sulfatos/química , Óxidos de Enxofre
19.
Pathol Res Pract ; 237: 154011, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841694

RESUMO

Biobanking plays a critical role in diagnostics, biomarker research and development of novel treatment approaches for various diseases. In urgent need of understanding, preventing and treating coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the importance of biobanking including data sharing and management further increased. To provide high quality tissue biomaterials and data for research and public health, the COVID-19 Autopsy and Biosample Registry was established in the state of Baden-Wuerttemberg (BW) in Germany, combining expertise and technologies of the Institutes of Pathology of the five university hospitals in BW (Heidelberg, Tübingen, Ulm, Freiburg, Mannheim). The COVID-19 Autopsy and Biosample Registry BW comprises tissue samples from autopsies and associated data of deceased patients in the context of SARS-CoV-2 infection and/or vaccination against SARS-CoV-2. The aim is to collect autopsy biospecimens, associated clinical and diagnostic data in a timely manner, register them, make them accessible for research projects and thus to support especially tissue-related research addressing COVID-19. By now, the BW network holds multiple collaborations and supported numerous publications to increase the understanding of COVID-19 disease. The achievements of the BW network as a landmark biobanking model project represent a potential blueprint for future disease-related biobanking and registry effort.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Autopsia , Bancos de Espécimes Biológicos , Sistema de Registros , Materiais Biocompatíveis
20.
Afr J Disabil ; 11: 867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280967

RESUMO

Background: Acquiring a physical disability in adulthood necessitates a range of adjustments, with past research suggesting that some challenges encountered are unique to women. Moreover, several factors may complicate adjustment to an altered embodiment and difficulties in functioning after an accident, including insufficient rehabilitation and support services and problematic societal attitudes towards disability. In addition, women with disabilities are often excluded from health and social policy and programme development, an oversight that can result in support gaps. Objectives: This article presents the self-identified priority interventions of women with road accident-acquired physical disabilities in South Africa. Methods: We conducted interviews with 18 women with road accident-acquired physical disabilities. The participants were recruited via snowball sampling. Interviews were conducted by experienced interviewers, who were home language speakers of the participants' preferred language of communication. The interview recordings were transcribed, translated, and coded by trained, independent researchers. Results: Study participants identified three key areas of intervention requiring consideration in supportive intervention planning: the acute post-injury environment and healthcare infrastructure, transitional services and social inclusion interventions. These were identified as overlooked areas in which they required support to successfully adapt to limitations in functioning. Conclusion: To develop inclusive, accessible, and practical policy and programming for people with disabilities, exercises like those outlined in this research - eliciting intervention ideas from lived experience - should be conducted as they highlight actionable priorities for programming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...